Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Open Forum Infect Dis ; 10(4): ofad152, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2296426

ABSTRACT

In November 2022, the National Emerging Special Pathogens Training and Education Center hosted a virtual session with global high-level isolation unit (HLIU) representatives to discuss HLIU staffing challenges and approaches. Takeaways are relevant to healthcare institutions seeking solutions to recruit and retain their healthcare workforce amid unprecedented global staffing shortages.

2.
Appl Biosaf ; 28(1): 32-42, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2259399

ABSTRACT

Introduction: Yale University designed and constructed a temporary field hospital for 100 COVID-19 symptomatic patients. Conservative biocontainment decisions were made in design and operational practices. Objectives of the field hospital included the safe flow of patients, staff, equipment and supplies, and obtaining approval by the Connecticut Department of Public Health (CT DPH) for opening as a field hospital. Methods: The CT DPH regulations for mobile hospitals were used as primary guidance for the design, equipment, and protocols. References for BSL-3 and ABSL-3 design from the National Institutes of Health (NIH) and Tuberculosis isolation rooms from the United States Centers for Disease Control and Prevention (CDC) were also utilized. The final design involved an array of experts throughout the university. Results and Conclusion: Vendors tested and certified all High Efficiency Particulate Air (HEPA) filters and balanced the airflows inside the field hospital. Yale Facilities designed and constructed positive pressure access and exit tents within the field hospital, established appropriate pressure relationships between zones, and added Minimum Efficiency Reporting Value 16 exhaust filters. The BioQuell ProteQ Hydrogen Peroxide decontamination unit was validated with biological spores in the rear sealed section of the biowaste tent. A ClorDiSys Flashbox UV-C Disinfection Chamber was also validated. Visual indicators were placed the doors of the pressurized tents and spaced throughout the facility to verify airflows. The plans created to design, construct and operate the field hospital provide a blueprint for recreating and reopening a field hospital in the future if ever needed at Yale University.

3.
HERD ; : 19375867221128916, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2243194

ABSTRACT

OBJECTIVES: This study aimed to develop a better understanding of the unique needs of patients with highly infectious diseases and their perceptions of being placed in isolation. We explore the subjective experiences of patients treated for Ebola in a biocontainment unit (BCU) and the healthcare personnel who cared for them. BACKGROUND: The 2014 Ebola outbreak and the COVID-19 pandemic have brought to focus some major challenges of caring for patients with serious infectious diseases. Previous studies on BCU design have looked at ways to prevent self- and cross-contamination, but very few have examined how the built environment can support an improved patient experience. METHOD: A qualitative study was conducted with four patients treated for Ebola and two critical care nurses who provided direct care to them at a single BCU in the U.S. Data were collected through in-depth semi-structured interviews to capture the actual patients' perception and experience of isolation. The interviews were analyzed using the thematic analysis approach. RESULTS: The Ebola patients placed in source isolation perceived the BCU as an artificial environment where they lacked control, agency, autonomy, and independence. The physical separation from other patients, visitor restrictions, and staff wearing PPE contributed to feelings of social and emotional isolation, and loneliness. CONCLUSIONS: The isolation can take a toll on physiological and psychological well-being. A thoughtful design of isolation units may improve patients' experience by supporting human and social interactions, empowering patients through space flexibility and personalization of space, and supporting a more holistic approach to isolation care.

4.
British Journal of Psychotherapy ; 39(1):158-169, 2023.
Article in English | EMBASE | ID: covidwho-2234887

ABSTRACT

The psychodynamic therapist is both aware of and open to phenomena arising in their relationship with the patient. This paper compares two different phenomena and expands on how processing these phenomena aids the therapeutic pair: Bion's container-contained relationship and Jung's concept of the collective unconscious, which could be thought of as containing the therapeutic relationship. The two concepts will be described and elucidated using a clinical example of a therapist's dream from the collective unconscious following sudden termination in therapy. This supports a synthesis of the two concepts in a developmental context and within the wider scholarship of both thinkers. Finally, their relationships to embodied processes will be explored. Copyright © 2022 BPF and John Wiley & Sons Ltd.

5.
Appl Biosaf ; 27(4): 237-246, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2230053

ABSTRACT

Introduction: This article will review the processes utilized to develop simple effective containment engineering controls. Short-Term Use Biocontainment Bubbles-Yale (STUBB-Ys), as Yale refers to them, were designed, built, tested, and implemented to protect members of the Yale University community from exposure to SARS-CoV-2 aerosols. STUBB-Ys were designed and created in conjunction with end users, constructed by Environmental Health and Safety (EHS) or partner groups, and tested onsite after installation to verify effective operation and containment. Methods: A wide variety of devices in different settings were developed and installed. STUBB-Ys were used at COVID-19 indoor test centers, laboratories, and clinics. The devices were pursued to create infection prevention measures where existing processes could not be utilized or were inadequate. Each STUBB-Y was tested with a C-Breeze Condensed Moisture Airflow Visualizer to generate smoke and a Fluke 985 Particle Counter, which gives the particle counts from 0.3 to 10 µm to measure particle escape visually and quantitatively. Airflow rates were also tested where applicable with a TSI VelociCalc 9525 Air Velocity Meter. Results: Students and faculty were able to safely continue vital research or clinical study in the targeted areas with the addition of these simple containment devices to confine aerosols. Conclusion: From a biorisk management point of view, EHS was able to confine aerosols at their potential source using simple designs and equipment and adhering to the hierarchy of controls. This article demonstrates how a straightforward design process can be used to enhance worker protection during a pandemic.

6.
Ciencia Animal Brasileira ; 24 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2197525

ABSTRACT

The novel coronavirus pandemic highlighted the importance of discussing and monitoring emerging diseases to scientific society, particularly in the case of zoonotic diseases. Diseases emerge in nature and infect living beings current on all continents, even in the current scenario of biomedical research evolution. Among the most studied emerging animal diseases are the swine viral diseases, due to their high occurrence and severity. Added to this, is the economic impact on the health of pigs and in some cases on human health. The challenges of swine health include endemic diseases, foodborne and transboundary diseases. Idiopathic vesicular diseases and subclinical diseases have also been identified, either alone or in combination with other infections. Several factors have contributed to these phenomena, but failures in biosecurity, biocontainment, and herd immunity imbalances are critical and must be addressed. Viruses evolve naturally, through mutation, rearrangement, or recombination, either to become more virulent or more transmissible, or not. This review will discuss the broad field of emerging swine viral infections, how monitoring the evolution of these viral agents is of supreme importance. Also, when should a new disease or emerging agent is considered a risk to swine production? Although the evolution of pork production systems is admirable, animal diseases continue to account for 20% of the losses. Therefore, international organizations work with member countries to prevent animal diseases, ensure food supply, maintain household income, health, and preserve the future. One Health is not just a concept, but an action of surveillance and control that all countries must implement. Copyright © 2023 Universidade Federal de Goias. All rights reserved.

7.
Health Secur ; 20(S1): S31-S38, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097253

ABSTRACT

In February 2015, the US Department of Health and Human Services developed a tiered hospital network to deliver safe and effective care to patients with Ebola virus disease (EVD) and other special pathogens. The tiered network consisted of regional special pathogen treatment centers, state- or jurisdiction-designated treatment centers, assessment hospitals able to safely isolate a patient until a diagnosis of EVD was confirmed and transfer the patient, and frontline healthcare facilities able to identify and isolate patients with EVD and facilitate transport to higher-tier facilities. The National Emerging Special Pathogens Training and Education Center (NETEC) was established in tandem to support the development of healthcare facility special pathogen management capabilities. In August 2020, 20 hospitals that previously received an onsite readiness consultation by NETEC were surveyed to assess how special pathogen programs were leveraged for COVID-19 response. All surveyed facilities indicated their programs were leveraged for COVID-19 response in at least 1 of the following ways: NETEC-sponsored resources and training, utilization of patient isolation spaces, specially trained staff, and supplies. Personal protective equipment shortages were experienced by 95% of facilities, with 80% of facilities reporting that special pathogens program personal protective equipment was used to support facility response to COVID-19 admissions. More than half of facilities (63%) reported leveraging biocontainment unit staff to provide training and education to frontline staff during initial response to COVID-19. These findings have implications for planning and investments to avoid the panic-then-forget cycle that hinders sustained preparedness for future special pathogens.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Hospitals , Humans , Patient Isolation , Personal Protective Equipment
8.
Health Secur ; 20(S1): S54-S59, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097248

ABSTRACT

Staff safety is paramount when managing an infectious disease event. However, early data from the COVID-19 pandemic suggested that staff compliance with personal protective equipment and other safety protocols was poor. In response to patient surges, many hospitals created dedicated "biomode" units to provide care for patients infected with SARS-CoV-2, the virus that causes COVID-19. To enhance staff safety on biomode units and during patient transports, our hospital created a safety officer/transport safety officer (SO/TSO) program. The first SOs/TSOs were nurses, clinical technicians, and other support staff who were redeployed from their home units when the units closed during the initial surge. During subsequent COVID-19 surges, dedicated SOs/TSOs were hired to maintain the program. SOs/TSOs provided just-in-time personal protective equipment training and helped staff safely enter and exit COVID-19 clinical units. SOs/TSOs participated in the transport of over 1,000 COVID-19 patients with no safety incidents reported. SOs/TSOs conducted safety audits throughout the hospital and observed 86% compliance with COVID-19 precautions across 32,500 activities. During contact tracing of frontline staff who became infected with SARS-CoV-2, potential deviations from COVID-19 precautions were identified in only 7.7% of cases. The SO/TSO program contributed to a culture of safety in the biomode units and helped to enhance infection prevention throughout the hospital. This program can serve as a model for other health systems during the response to the current pandemic and during future infectious disease threats.


Subject(s)
COVID-19 , COVID-19/prevention & control , Hospitals , Humans , Pandemics/prevention & control , Personal Protective Equipment , SARS-CoV-2
9.
ILAR J ; 61(1): 3-9, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1908823

ABSTRACT

With the recent upswing of infectious disease outbreaks (coronavirus, influenza, Ebola, etc), there is an ever-increasing need for biocontainment animal use protocols to better address the research of emerging diseases and to increase the health of both animals and humans. It is imperative that we as a research community ensure these protocols are conducted with the utmost scrutiny and regulatory compliance for the welfare of the animals as well as the health and safety concerns of the individual conducting these studies. Both the welfare of the animals and the health and safety of the research staff must be balanced with the integrity of the science being studied. Even prior to reviewing biocontainment protocols, the research stakeholders should have professional and collegial interactions across all levels of the proposed project. These stakeholders should include the attending veterinarian, the principal investigator, the sponsor, and any organic institutional health and safety assets (environmental health and safety, occupational health, biosafety personnel, medical personnel, facilities operations and maintenance, etc). At most institutions, these stakeholders are members of the Institutional Animal Care and Use Committee and may not possess the necessary tools to properly assess an Animal Biosafety Level 3 and 4 animal use protocol. It is the goal of this article to review some basic concepts of biocontainment, discuss critical communications and preapprovals, clinical observations, medical interventions and supportive care, scientific and study endpoints, euthanasia criteria, animal manipulations, documentation, training, emergency response and contingency plans, security, and decontamination and provide a scenario-based and informative thought-provoking process Institutional Animal Care and Use Committee members and veterinary staff may consider during Animal Biosafety Level 3 and 4 protocol review. These topics will enhance the ability of all stakeholders to balance the protection of the people with the integrity of the science and ultimately the welfare of the animal.


Subject(s)
Animal Care Committees , Occupational Health , Animals , Containment of Biohazards , Humans
10.
Appl Biosaf ; 26(4): 205-209, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1554776

ABSTRACT

Introduction: Fluorescent-activated cell sorting (FACS) is often the most appropriate technique to obtain pure populations of a cell type of interest for downstream analysis. However, aerosol droplets can be generated during the sort, which poses a biosafety risk when working with samples containing risk group 3 pathogens such as Francisella tularensis, Mycobacterium tuberculosis, Yersinia pestis, and severe acute respiratory syndrome coronavirus 2. For many researchers, placing the equipment required for FACS at biosafety level 3 (BSL-3) is often not possible due to expense, space, or expertise available. Methods: We performed aerosol testing as part of the biosafety evaluation of the MACSQuant Tyto, a completely closed, cartridge-based cell sorter. We also established quality control procedures to routinely evaluate instrument performance. Results: The MACSQuant Tyto does not produce aerosols as part of the sort procedure. Discussion: These data serve as guidance for other facilities with containment laboratories wishing to use the MACSQuant Tyto for cell sorting. Potential users should consult with their Institutional Biosafety Committees to perform in-house risk assessments of this equipment. Conclusion: The MACSQuant Tyto can safely be used on the benchtop to sort samples at BSL-3.

11.
J Occup Environ Hyg ; 18(9): 430-435, 2021 09.
Article in English | MEDLINE | ID: covidwho-1354224

ABSTRACT

Personal protective equipment used by healthcare workers to mitigate disease transmission risks while caring for patients with high-consequence infectious diseases can impair normal body cooling mechanisms and exacerbate physiological strain. Symptoms of heat strain (e.g., cognitive impairment, confusion, muscle cramping) are especially harmful in the high-risk environment of high-consequence infectious disease care. In this pilot study, the core body temperatures of healthcare workers were assessed using an ingestible, wireless-transmission thermometer while performing patient care tasks common to a high-level isolation unit setting in powered air purifying respirator (PAPR)-level. The objective was to determine the potential for occupational health hazard due to heat stress in an environmentally controlled unit. Maximum core temperatures of the six participants ranged from 37.4 °C (99.3 °F) to 39.9 °C (103.8°F) during the 4-hr shift; core temperatures of half (n = 3) of the participants exceeded 38.5 °C (101.3 °F), the upper core temperature limit. Future investigations are needed to identify other heat stress risks both in and outside of controlled units. The ongoing COVID-19 pandemic offers unique opportunities for field-based research on risks of heat stress related to personal protective equipment in healthcare workers that can lead to both short- and long-term innovations in this field.


Subject(s)
Body Temperature/physiology , COVID-19/epidemiology , Heat Stress Disorders/etiology , Patient Isolation , Personal Protective Equipment/adverse effects , Adult , Body Mass Index , Female , Health Personnel , Humans , Male , Middle Aged , Occupational Health , Pandemics , Pilot Projects , SARS-CoV-2
12.
Health Secur ; 19(3): 318-326, 2021.
Article in English | MEDLINE | ID: covidwho-1171919

ABSTRACT

The impact of host genomics on an individual's susceptibility, immune response, and risk of severe outcomes for a given infectious pathogen is increasingly recognized. As we uncover the links between host genomics and infectious disease, a number of ethical, legal, and social issues need to be considered when using that information in clinical practice or workforce decisions. We conducted a survey of the clinical staff at 10 federally funded Regional Ebola and Other Special Pathogen Treatment Centers to understand their views regarding the ethical, legal, and social issues related to host genomics and the administrative and clinical functions of high-level isolation units. Respondents overwhelmingly agreed that genomics could provide valuable information to identify patients and employees at higher risk for poor outcomes from highly infectious diseases. However, there was considerable disagreement about whether such data should inform the allocation of scarce resources or determine treatment decisions. While most respondents supported a confidential employer-based genomic testing system to inform individual employees about risk, respondents disagreed about whether such information should be used in staffing models. Respondents who thought genomic information would be valuable for patient treatment were more willing to undergo genetic testing for staffing purposes. Most respondents felt they would benefit from additional training to better interpret results from genetic testing. Although this study was completed before the COVID-19 pandemic, the responses provide a baseline assessment of provider attitudes that can inform policy during the current pandemic and in future infectious disease outbreaks.


Subject(s)
Attitude of Health Personnel , Biomedical Research/ethics , Genomics/ethics , Health Personnel/ethics , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/prevention & control , Humans
13.
Vaccines (Basel) ; 9(3)2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1167773

ABSTRACT

Non-human primates (NHPs) are used extensively in the development of vaccines and therapeutics for human disease. High standards in the design, conduct, and reporting of NHP vaccine studies are crucial for maximizing their scientific value and translation, and for making efficient use of precious resources. A key aspect is consideration of the 3Rs principles of replacement, reduction, and refinement. Funders of NHP research are placing increasing emphasis on the 3Rs, helping to ensure such studies are legitimate, ethical, and high-quality. The UK's National Centre for the 3Rs (NC3Rs) and the Coalition for Epidemic Preparedness Innovations (CEPI) have collaborated on a range of initiatives to support vaccine developers to implement the 3Rs, including hosting an international workshop in 2019. The workshop identified opportunities to refine NHP vaccine studies to minimize harm and improve welfare, which can yield better quality, more reproducible data. Careful animal selection, social housing, extensive environmental enrichment, training for cooperation with husbandry and procedures, provision of supportive care, and implementation of early humane endpoints are features of contemporary good practice that should and can be adopted more widely. The requirement for high-level biocontainment for some pathogens imposes challenges to implementing refinement but these are not insurmountable.

14.
Membranes (Basel) ; 11(4)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1167659

ABSTRACT

BACKGROUND: The most critically ill patients with coronavirus disease 2019 (COVID-19) may require advanced support modalities, such as veno-venous extracorporeal membrane oxygenation (VV-ECMO). A systematic, methodical approach to a respiratory pandemic on a state and institutional level is critical. METHODS: We conducted retrospective review of our institutional response to the COVID-19 pandemic, focusing on the creation of a dedicated airlock biocontainment unit (BCU) to treat patients with refractory COVID-19 acute respiratory distress syndrome (CARDS). Data were collected through conversations with staff on varying levels in the BCU, those leading the effort to make the BCU and hospital incident command system, email communications regarding logistic changes being implemented, and a review of COVID-19 patient census at our institution from March through June 2020. RESULTS: Over 2100 patients were successfully admitted to system hospitals; 29% of these patients required critical care. The response to this respiratory pandemic augmented intensive care physician staffing, created a 70-member nursing team, and increased the extracorporeal membrane oxygenation (ECMO) capability by nearly 200%. During this time period, 40 COVID-19 patients on VV-ECMO were managed in the BCU. Challenges in an airlock unit included communication, scarcity of resources, double-bunking, and maintaining routine care. CONCLUSIONS: Preparing for a surge of critically ill patients during a pandemic can be a daunting task. The implementation of a coordinated, system-level approach can help with the allocation of resources as needed. Focusing on established strengths of hospitals within the system can guide triage based on individual patient needs. The management of ECMO patients is still a specialty care, and a systematic and hospital based approach requiring an ECMO team composed of multiple experienced individuals is paramount during a respiratory viral pandemic.

15.
Methods Protoc ; 4(1)2021 Feb 27.
Article in English | MEDLINE | ID: covidwho-1121291

ABSTRACT

The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) causes Coronavirus disease-2019 (COVID-19), which is an ongoing pandemic that has significantly affected the health, economy, and socio-economic status of individuals worldwide. Laboratory research using in vitro, ex vivo and in vivo models has been accelerated to understand the pathogenesis of SARS-CoV-2 infection. However, such experimental research involving SARS-CoV-2 is restricted to biocontainment/safety level-3 (BSL-3) settings, due to the high pathogenicity of this virus. Since many of the downstream analyses of SARS-CoV-2-infected biological samples need to be conducted in a non-BSL3 setting, it is important to ensure that the samples are fully decontaminated and safe for subsequent analysis. Here, we report the effectiveness of standard procedures used to fix cells and tissues for pathological analysis, including 2% or 4% paraformaldehyde, 50%-70% ethanol, 10% neutral buffered formalin and ultrafiltration using membranes with a molecular weight cut-off (MWCO) ranging from 3 to 30 kDa, for inactivating or eliminating SARS-CoV-2. We validated these methods in experimental laboratory samples, such as viral inoculum in cell culture media, SARS-CoV-2 infected host cells and animal tissue lysates. We found that 15 minutes' treatment of viral inoculum (105 plaque-forming units; PFU) or SARS-CoV-2 infected cells with paraformaldehyde or 70% ethanol resulted in complete inactivation of the virus. The treatment of infected hamster lung tissues with 10% neutral buffered formalin also fully inactivated the virus. However, only 3 kDa ultracentrifuge filter was effective in eliminating the virus to an undetectable limit in the filtrate. Our validated methods are useful for decontaminating biological samples to reduce infection risk and safe handling in BSL2 facilities.

16.
Disaster Med Public Health Prep ; 16(3): 1279-1281, 2022 06.
Article in English | MEDLINE | ID: covidwho-910326

ABSTRACT

The need for increased testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has resulted in an increase of testing facilities outside of traditional clinical settings and sample handling by individuals without appropriate biohazard and biocontainment training. During the repatriation and quarantine of passengers from the Grand Princess cruise ship at a US military base, biocontainment of a potentially infectious sample from a passenger was compromised. This study describes the steps taken to contain the spill, decontaminate the area, and discusses the needs for adequate training in a biohazard response.


Subject(s)
COVID-19 , Quarantine , Humans , Quarantine/methods , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Hazardous Substances , Disease Outbreaks/prevention & control , Ships
17.
Appl Biosaf ; 25(3): 169-173, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-706071

ABSTRACT

Introduction: An infectious disease outbreak like the current COVID-19 pandemic can lead to particularly high infection rates in areas where diagnostic laboratory support is limited. The deployment of mobile laboratories can help to detect pathogens, monitor the presence in a population, and inform public health authorities to take measures aimed at reducing pathogen spread. Materials and Methods: Available layouts and operational descriptions of mobile laboratories were analyzed for their suitability for the envisioned purpose and to assure high standards of biosafety and biosecurity. Recent media coverage on creative solutions for the diagnostics of SARS-CoV-2 (drive-through test centers, self-swab, inverse gloveboxes to protect health care workers) from various countries were considered. Results: A minimalistic and optimized design to construct a multifunctional laboratory on the chassis of a regular-sized box truck is proposed and can serve as a blueprint to rapidly develop additional diagnostic capacities. Discussion: For acute health threats including the current COVID-19 outbreak, rapid diagnosis of infection is key to recommend measures aimed at preventing the spread of the pathogen. Laboratory layouts that are similar to the one proposed here are used in stationary setups, and mobile laboratories have been built on varying platforms (trailers, shipping containers, etc).

18.
Indian J Med Res ; 151(2 & 3): 177-183, 2020.
Article in English | MEDLINE | ID: covidwho-14137

ABSTRACT

Preparedness for the ongoing coronavirus disease 2019 (COVID-19) and its spread in India calls for setting up of adequately equipped and dedicated health facilities to manage sick patients while protecting healthcare workers and the environment. In the wake of other emerging dangerous pathogens in recent times, such as Ebola, Nipah and Zika, it is important that such facilities are kept ready during the inter-epidemic period for training of health professionals and for managing cases of multi-drug resistant and difficult-to-treat pathogens. While endemic potential of such critically ill patients is not yet known, the health system should have surge capacity for such critical care units and preferably each tertiary government hospital should have at least one such facility. This article describes elements of design of such unit (e.g., space, infection control, waste disposal, safety of healthcare workers, partners to be involved in design and plan) which can be adapted to the context of either a new construction or makeshift construction on top of an existing structure. In view of a potential epidemic of COVID-19, specific requirements to handle it are also given.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/epidemiology , Disease Outbreaks , Health Personnel , Humans , Occupational Exposure , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Safety Management
SELECTION OF CITATIONS
SEARCH DETAIL